
Blazor Boilerplate
Release 4.0.0

Dec 26, 2022

Introduction

1 Blazor Server 3
1.1 Pros . 3
1.2 Cons . 3

2 Blazor WebAssembly 5
2.1 Pros . 5
2.2 Cons . 5

2.2.1 Architecture . 7
2.2.2 Security . 7
2.2.3 Breeze Sharp with Blazor . 9
2.2.4 Entity Framework Core . 10
2.2.5 Localization . 11
2.2.6 Deploy with Terraform . 12
2.2.7 Hosting Blazor Boilerplate 2.0.0 on Azure . 13
2.2.8 Dual mode Blazor . 23
2.2.9 MultiTenancy . 24
2.2.10 IdentityServer4 . 25
2.2.11 Source Generators . 26

i

ii

Blazor Boilerplate, Release 4.0.0

Blazor Boilerplate is a starter template for Blazor web apps.

With Blazor Boilerplate you can easily switch between the two modes of Blazor.

From Microsoft documentation ASP.NET Core Blazor hosting models.

Introduction 1

https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models

Blazor Boilerplate, Release 4.0.0

2 Introduction

CHAPTER 1

Blazor Server

1.1 Pros

• Download size is significantly smaller than a Blazor WebAssembly app, and the app loads much faster.

• The app takes full advantage of server capabilities, including use of any .NET Core compatible APIs.

• .NET Core on the server is used to run the app, so existing .NET tooling, such as debugging, works as expected.

• Thin clients are supported. For example, Blazor Server apps work with browsers that don’t support WebAssem-
bly and on resource-constrained devices.

• The app’s .NET/C# code base, including the app’s component code, isn’t served to clients.

1.2 Cons

• Higher latency usually exists. Every user interaction involves a network hop.

• There’s no offline support. If the client connection fails, the app stops working.

• Scalability is challenging for apps with many users. The server must manage multiple client connections and
handle client state.

• An ASP.NET Core server is required to serve the app. Serverless deployment scenarios aren’t possible (for
example, serving the app from a CDN).

3

Blazor Boilerplate, Release 4.0.0

4 Chapter 1. Blazor Server

CHAPTER 2

Blazor WebAssembly

2.1 Pros

• There’s no .NET server-side dependency. The app is fully functioning after it’s downloaded to the client.

• Client resources and capabilities are fully leveraged.

• Work is offloaded from the server to the client.

• An ASP.NET Core web server isn’t required to host the app. Serverless deployment scenarios are possible (for
example, serving the app from a CDN).

2.2 Cons

• The app is restricted to the capabilities of the browser.

• Capable client hardware and software (for example, WebAssembly support) is required.

• Download size is larger, and apps take longer to load.

• .NET runtime and tooling support is less mature. For example, limitations exist in .NET Standard support and
debugging.

5

Blazor Boilerplate, Release 4.0.0

6 Chapter 2. Blazor WebAssembly

Blazor Boilerplate, Release 4.0.0

2.2.1 Architecture

The diagram shows the dependencies of the main projects. Every project with text to localize depends on Localization
project.

Client project is used only with Blazor WebAssembly, so it runs on the browser. It initializes the WebAssembly
startup. If you only use Blazor Server, remove this project from solution.

Server project manages the main services: authentication, authorization, API, etc.

Storage project manages the persistence of models in a database with Entity Framework Core.

Infrastructure project contains interfaces and models in common among projects running on server.

Shared project contains base interfaces and models in common among projects running on server or client.

Module projects contains UI, services, etc. that define your web application.

2.2.2 Security

Administrator

In BlazorBoilerplate.Constants project change Administrator name to something less obvious than “admin”.

namespace BlazorBoilerplate.Constants
{

public static class DefaultUserNames
{

public const string Administrator = "iamtheboss";
public const string User = "user";

}
}

2.2. Cons 7

https://docs.microsoft.com/en-us/ef/core/

Blazor Boilerplate, Release 4.0.0

In the same project reinforce password policy.

namespace BlazorBoilerplate.Constants
{

public static class PasswordPolicy
{

public const bool RequireDigit = true;
public const int RequiredLength = 8;
public const bool RequireNonAlphanumeric = true;
public const bool RequireUppercase = true;
public const bool RequireLowercase = true;

}
}

In DatabaseInitializer in BlazorBoilerplate.Storage project change Administrator password “admin123” to satisfy new
policy.

public async Task EnsureAdminIdentitiesAsync()
{

await EnsureRoleAsync(DefaultRoleNames.Administrator, _entityPermissions.
→˓GetAllPermissionValues());

await CreateUserAsync(DefaultUserNames.Administrator, "X!PvG5+@", "Admin", "Blazor
→˓", "admin@blazorboilerplate.com", "+1 (123) 456-7890", new string[] {
→˓DefaultRoleNames.Administrator });

API endpoints

Imagine a malicious user writing or using a tool to call directly your API endpoints bypassing your UI, are your API
endpoints protected by the right policy?

[HttpGet]
[Authorize(Policies.IsAdmin)]
public IQueryable<ApplicationUser> Users()
{

return persistenceManager.GetEntities<ApplicationUser>().AsNoTracking().Include(i
→˓=> i.UserRoles).ThenInclude(i => i.Role).OrderBy(i => i.UserName);
}

What about the Breeze SaveChanges endpoint?

[AllowAnonymous]
[HttpPost]
public SaveResult SaveChanges([FromBody] JObject saveBundle)
...

First of all remove [AllowAnonymous] attribute. An authenticated malicious user could post a proper json to update
some EF entities. To avoid this, decorate your EF entities with proper Permission attribute. E.g.

namespace BlazorBoilerplate.Infrastructure.Storage.DataModels
{

[Permissions(Actions.Delete)]
public partial class Todo : IAuditable, ISoftDelete

...

Add the entity permissions to a role and put a user in this role.

8 Chapter 2. Blazor WebAssembly

Blazor Boilerplate, Release 4.0.0

2.2.3 Breeze Sharp with Blazor

Note: What you will read here are my personal opinions. I have been using Breeze from years for both web and
desktop applications and I have no connection with Breeze team.

Giovanni Quarella

Recommended CRUD API design is too verborse and boring.

For each CRUD action Create, Read, Update and Delete you have to add a method to your API controller. Also you
have to repeat the same pattern for every entity of your application domain.

In real use cases you cannot perform also single actions on entities, because changes have to happen at the same time
in a transaction. So you have to write other code. . .

Do you know good coders are lazy? Do you know the DRY principle?

The solution is a Breeze Controller.

As you can read in the official documentation: “One controller to rule them all . . . ”.

Breeze Server

In this project the Breeze Controller is ApplicationController and the EFPersistenceManager is ApplicationPersis-
tenceManager.

The ApplicationController has no Authorize attribute, because to keep policy management with Breeze, I implemented
a simple custom policy management in ApplicationPersistenceManager.

First of all you can mark the EF entities with Permissions attribute which takes CRUD Actions flag enum as parameter.
Examples:

[Permissions(Actions.Delete)]
public partial class Todo
{
...

}

[Permissions(Actions.Create | Actions.Update)]
public partial class Todo
{
...

}

[Permissions(Actions.CRUD)]
public partial class Todo
{
...

}

In BeforeSaveEntities method of ApplicationPersistenceManager the actions of the entities to be saved are compared
with the claims of permission type of the current user. If a policy is violated an EntityErrorsException is thrown.

To check Actions.Read in ApplicationController you have to access EF DbSet with GetEntities method of Applica-
tionPersistenceManager.

2.2. Cons 9

https://github.com/GioviQ
http://breeze.github.io/doc-net/webapi-controller-core.html
http://breeze.github.io/doc-net/webapi-controller-core.html
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Server/BlazorBoilerplate.Server/Controllers/ApplicationController.cs
http://breeze.github.io/doc-net/ef-efpersistencemanager-core.html
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Server/BlazorBoilerplate.Storage/ApplicationPersistenceManager.cs
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Server/BlazorBoilerplate.Storage/ApplicationPersistenceManager.cs
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Server/BlazorBoilerplate.Server/Controllers/ApplicationController.cs
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Server/BlazorBoilerplate.Storage/ApplicationPersistenceManager.cs
https://github.com/enkodellc/blazorboilerplate/tree/master/src/Shared/BlazorBoilerplate.Infrastructure.Storage/DataModels
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Shared/BlazorBoilerplate.Infrastructure/AuthorizationDefinitions/PermissionsAttribute.cs
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Shared/BlazorBoilerplate.Infrastructure/AuthorizationDefinitions/Actions.cs
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Server/BlazorBoilerplate.Storage/ApplicationPersistenceManager.cs
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Server/BlazorBoilerplate.Server/Controllers/ApplicationController.cs
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Server/BlazorBoilerplate.Storage/ApplicationPersistenceManager.cs
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Server/BlazorBoilerplate.Storage/ApplicationPersistenceManager.cs

Blazor Boilerplate, Release 4.0.0

Breeze.Sharp (Breeze C# client)

To access Breeze Controller you have to use Breeze.Sharp. In Blazor BlazorBoilerplate ApiClient is what you need to
query ApplicationController. You can inject IApiClient in every Razor page where entities are requested.

The Breeze.Sharp entities are the so called DTO and you should create one for every entities of your Entity Framework
context in EF entities. To avoid repetitive tasks, I created EntityGenerator based on Source Generators. Every time
you update EF entities, rebuild BlazorBoilerplate.Shared project to have Breeze entities automatically generated with
namespace BlazorBoilerplate.Shared.Dto.Db.

Notes

At the moment Todo is the only entity used to demonstrate Breeze.Sharp capabilities. In fact you can extend the use
to all other entities, but administrative entities (users, roles, etc.) are managed by others libraries like ASP.NET Core
Identity and IdentityServer4, so I preferred to keep the dedicated AdminController.

If you think that is all wonderful, here it comes the drawback.

The used of C# as a replacement of javascript is something very new: it is the Blazor revolution. So till now
Breeze.Sharp has been used a little only on desktop application. In fact the most used Breeze client is the javascript
client BreezeJS and Breeze itself is not .NET centric.

For this reason breeze.sharp library is rarely updated, so to make BlazorBoilerplate working with Breeze I used my
fork GioviQ/breeze.sharp where I fixed some issues. You can find the package in https://www.nuget.org/packages/
Breeze.Sharp.Standard.Fork/.

2.2.4 Entity Framework Core

Getting started with EF Core (code first) reading this tutorial.

Migrations

You can perform Entity Framework Core migrations directly from Visual Studio with Package Manager Console or
with command-line interface.

Here some tips to manage migrations in Blazor Boilerplate with command-line interface (CLI).

1. Make sure you have installed CLI; from the command line execute:

dotnet tool install --global dotnet-ef

or to update

dotnet tool update --global dotnet-ef

2. Keep in mind that every DbContext has its own migrations.

The main DbContext is ApplicationDbContext. PersistedGrantDbContext and ConfigurationDbContext
depend on IdentityServer4; if new versions have changed one or both db contexts, you have to add migrations.
The migrations are in BlazorBoilerplate.Storage, so you have to open your shell in this path. Then you have to
specify the project where the db contexts are added to the services, because dotnet ef has to know how to find
and instantiate them. In our case the so called startup project is BlazorBoilerplate.Server. So the commands
are:

10 Chapter 2. Blazor WebAssembly

http://breeze.github.io/doc-cs/
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Shared/BlazorBoilerplate.Shared/Services/ApiClient.cs
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Server/BlazorBoilerplate.Server/Controllers/ApplicationController.cs
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Shared/BlazorBoilerplate.Shared/Interfaces/IApiClient.cs
http://breeze.github.io/doc-cs/entities-and-complexobjects.html
https://github.com/enkodellc/blazorboilerplate/tree/master/src/Shared/BlazorBoilerplate.Infrastructure.Storage/DataModels
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Utils/BlazorBoilerplate.SourceGenerator/EntityGenerator.cs
https://devblogs.microsoft.com/dotnet/introducing-c-source-generators/
https://github.com/enkodellc/blazorboilerplate/tree/master/src/Shared/BlazorBoilerplate.Infrastructure.Storage/DataModels
https://github.com/enkodellc/blazorboilerplate/tree/master/src/Shared/BlazorBoilerplate.Shared/Dto/Db
https://github.com/Breeze/breeze.sharp
https://github.com/GioviQ/breeze.sharp
https://www.nuget.org/packages/Breeze.Sharp.Standard.Fork/
https://www.nuget.org/packages/Breeze.Sharp.Standard.Fork/
https://docs.microsoft.com/en-us/ef/core/get-started/overview/first-app
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet
https://identityserver4.readthedocs.io/en/latest/quickstarts/5_entityframework.html#database-schema-changes-and-using-ef-migrations

Blazor Boilerplate, Release 4.0.0

dotnet ef --startup-project ../BlazorBoilerplate.Server/ migrations add 4Preview3 -c
→˓PersistedGrantDbContext --verbose --no-build --configuration Debug

dotnet ef --startup-project ../BlazorBoilerplate.Server/ migrations add 4Preview3 -c
→˓ConfigurationDbContext --verbose --no-build --configuration Debug

Without the –no-build parameter, dotnet rebuilds the startup project, but if you have just built it with Visual Studio, it
is just a waste of time. Also the dotnet build is not the Visual Studio build, so to avoid issue, use this procedure.

The name of migration, in this case 4Preview3, is only descriptive and it does not need to be unique, because automat-
ically the name is prepended with date time.

If the command is successful, [datetime]_[migration-name].cs is added to the solution. Also the [db-context-
name]ModelSnapshot.cs is updated to reflect the db changes in case a new db has to be created.

When you run the project, the migrations are applied to the database (in our case we have only one db). The db table
__EFMigrationsHistory keeps track of applied migrations without information about the related db context. To get
this information use the following command; for example for ConfigurationDbContext:

dotnet ef --startup-project ../BlazorBoilerplate.Server/ migrations list -c
→˓ConfigurationDbContext --verbose --no-build --configuration Debug

You can also update the database, without running the project with the following command:

dotnet ef --startup-project ../BlazorBoilerplate.Server/ database update 4Preview3 -c
→˓ConfigurationDbContext --verbose --no-build --configuration Debug

If you specify a previous migration, you can revert the db changes to that migration.

Warning

The migrations are not smart, when you have an existing db with populated tables. If migrations add keys and/or
unique indexes or something else violating referential integrity, you have to manually modify [datetime]_[migration-
name].cs for example to add some SQL to fix the errors. E.g. migrationBuilder.Sql(“UPDATE AspNetUserLogins
SET Id=NEWID() WHERE Id=””); to add unique values to a new field before setting as a new primary key.

Shadow Properties vs Source Generator

Always keeping in mind the DRY principle, it is boring implementing audit information and adding the same properties
CreatedOn, ModifiedOn, CreatedBy and ModifiedBy to all entities.

Some articles teach you to use Shadow Properties to add audit information, but this is not the right solution, if you
want expose these properties on the mapped entity types and use them e.g. in UI.

A solution is using Source Generator. AuditableGenerator generates for every class implementing IAuditable the
above properties. Remember all classes to be extended by Source Generator have to be partial.

2.2.5 Localization

Localization has moved from Resource based localization to Database based localization, so translation are no more
in dll satellite libraries, but in table LocalizationRecords. Look at LocalizationDbContext.

The localization code is in BlazorBoilerplate.Shared.Localizer project. The supported cultures are defined in Set-
tings.cs.

At this time Data Annotations do not support IStringLocalizer<>, so to localize validation error messages, we have
to use Blazored.FluentValidation.

2.2. Cons 11

https://docs.microsoft.com/en-us/ef/core/modeling/shadow-properties
https://devblogs.microsoft.com/dotnet/introducing-c-source-generators
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Utils/BlazorBoilerplate.SourceGenerator/AuditableGenerator.cs
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Server/BlazorBoilerplate.Storage/LocalizationDbContext.cs
https://github.com/enkodellc/blazorboilerplate/tree/master/src/Shared/BlazorBoilerplate.Shared.Localizer
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Shared/BlazorBoilerplate.Shared.Localizer/Settings.cs
https://github.com/enkodellc/blazorboilerplate/blob/master/src/Shared/BlazorBoilerplate.Shared.Localizer/Settings.cs
https://github.com/Blazored/FluentValidation

Blazor Boilerplate, Release 4.0.0

Po files

This project adopts the PO file format as standard translations files. In the admin section you can edit translations and
import and export PO files. There are a lot of free and paid tools and online services to manage these files. E.g.:

Poedit

Eazy Po

Crowdin (PO file format support)

To manage PO files BlazorBoilerplate uses Karambolo.PO library. So to handle plurals the Karambolo.PO syntax is
used like in the example below.

Everywhere you need localized text, inject IStringLocalizer<Global> and look how it is used throughout the code.

L["MsgId usually in english"]

L["Email {0} is not valid", email]

L["One item found", Plural.From("{0} items found", totalItemsCount)]

2.2.6 Deploy with Terraform

Terraform Overview

• Use terraform to deploy to nearly any hosting environment

• Terraform is open source https://github.com/hashicorp/terraform

• For more information go to https://www.terraform.io/

Pass

1. Install and initialize pass.

• pass makes managing these deployment parameters extremely easy

• For instructions to install and initialize go to: https://www.passwordstore.org/

• When you export your environment variables via export TF_VAR_variable_name, the variables get pulled in
during terraform plan and terraform apply

Terraform for AWS

1. Once pass is installed and initialized do the following to store the environment variables in pass

pass insert access_key
pass insert secret_key
pass insert aws_key_name
pass insert docker_blazorboilerplate_image
pass insert docker_sqlserver_image
pass insert sa_password
pass insert cert_password
pass insert ASPNETCORE_ENVIRONMENT
pass insert Serilog__MinimumLevel__Default

2. Set terraform deployment environment variables for use in terraform:

12 Chapter 2. Blazor WebAssembly

https://www.gnu.org/software/gettext/manual/html_node/PO-Files.html
https://poedit.net/
http://www.eazypo.ca/
https://www.crowdin.com/
https://support.crowdin.com/file-formats/po/
https://github.com/adams85/po
https://github.com/hashicorp/terraform
https://www.terraform.io/
https://www.passwordstore.org/

Blazor Boilerplate, Release 4.0.0

export TF_VAR_access_key=$(pass access_key)
export TF_VAR_secret_key=$(pass secret_key)
export TF_VAR_aws_key_name=$(pass aws_key_name)
export TF_VAR_docker_blazorboilerplate_image=$(pass docker_blazorboilerplate_image)
export TF_VAR_docker_sqlserver_image=$(pass docker_sqlserver_image)
export TF_VAR_sa_password=$(pass sa_password)
export TF_VAR_cert_password=$(pass cert_password)
export TF_VAR_ASPNETCORE_ENVIRONMENT=$(pass ASPNETCORE_ENVIRONMENT)
export TF_VAR_Serilog__MinimumLevel__Default=$(pass Serilog__MinimumLevel__Default)

In Windows use setx instead. e.g.
setx TF_VAR_access_key=$(pass access_key)

3. Install Terraform at https://learn.hashicorp.com/tutorials/terraform/install-cli?in=terraform/aws-get-started

- follow instructions on page

4. Deploy using Terraform

cd ./src/Utils/Terraform/AWS
terraform init
terraform plan
terraform apply

Terraform for Azure (Todo)

1. Once pass is installed and initialized do the following to store the environment variables in pass

todo:
pass insert param1
pass insert param2

2. Set terraform deployment environment variables for use in terraform:

todo:
export TF_VAR_param1=$(pass param1)
export TF_VAR_param2=$(pass param2)

In Windows use setx instead. e.g.
setx TF_VAR_param1=$(pass param1)

3. Install Terraform at https://learn.hashicorp.com/tutorials/terraform/install-cli?in=terraform/azure-get-started

- follow instructions on page

4. Deploy using Terraform (Todo)

cd ./src/Utils/Terraform/Azure
terraform init
terraform plan
terraform apply

2.2.7 Hosting Blazor Boilerplate 2.0.0 on Azure

(Note: This document builds upon, and credits, an earlier pdf guide produced by @soomon).

2.2. Cons 13

https://learn.hashicorp.com/tutorials/terraform/install-cli?in=terraform/aws-get-started
https://learn.hashicorp.com/tutorials/terraform/install-cli?in=terraform/azure-get-started

Blazor Boilerplate, Release 4.0.0

This guide produces a working demonstration installation of Blazor Boilerplate on Azure App Services. Various
configuration settings, security and design considerations must be evaluated before moving into production.

This guide is tested/working as at June 2021.

Preamble

Please be aware that hosting on Microsoft Azure will cost money. This tutorial assumes that you already have a
working Azure subscription.

In this example, Blazor Boilerplate is being hosted using App Services and a managed SQL database.

The certificate for Identity Server has been stored in Azure Key Vault.

Visual Studio is being used to deploy the app to Azure. Version 16.10.0 was used in this example.

Ensure that you choose the same subscription, region and resource group for all resources created in this tutorial. Some
Azure resources cannot see each other across regions.

All URIs, resources, usernames and passwords shown have been deleted prior to publishing.

Configure Azure Environment

Create the Azure Web App

Using either the Azure Portal App (https://portal.azure.com/App/Download?acceptLicense=true) or the
portal web interface, create a new Web App and configure it as follows:

14 Chapter 2. Blazor WebAssembly

https://portal.azure.com/App/Download?acceptLicense=true

Blazor Boilerplate, Release 4.0.0

Resource Group: (create new) blazor_boilerplate_demo_rg

Instance Name: blazor-boilerplate **(.azurewebsites.net)

Publish: Code

Stack: .NET 5

OS: Windows

Region: (whatever works for you)

App Service Plan: (create new) blazor-boilerplate-app-service-plan. Select the Dev/Free F1 tier for demo
purposes.

** The instance name must be globally unique. It is created in the azurewebsites.net domain.

Review + Create the new web app, then open the resource to continue with configuration.

Configure the Azure Web App

a. Select Configuration and General Settings and configure as follows:

2.2. Cons 15

Blazor Boilerplate, Release 4.0.0

Stack: .NET

.NET Version: .NET 5**

Platform: 64 Bit

Pipeline: Integrated

Web Sockets: On - * Important

** Currently there is a bug in the portal that causes .NET version to display .NET Core (3.1/2.1) whenever
you return to the general settings page. This is OK, it doesn’t affect our demo.

Save these general settings and exit configuration.

b. Select Identity and confirm that that System Assigned identity is turned on.

16 Chapter 2. Blazor WebAssembly

Blazor Boilerplate, Release 4.0.0

c. Configure Custom Domains and TLS/SSL Settings

By default, the new web app is accessible via http://blazor-boilerplate.azurewebsites.net. To enable vari-
ous security features in Blazor Boilerplate to function in a hosted environment it must be secured with a
certificate.

Either:

• secure the default URL (in the azurewebsites.net domain)

Or:

• secure your own host in a custom domain you control (e.g., http://blazor-boilerplate.demodomain.com)

If you are using a custom domain, select Custom Domains and add and verify a new custom domain.
Note: you will need access to DNS host records for your chosen domain to verify it using the custom
domain verification ID. In this example we have added blazor-boilerplate.demodomain.com as a custom
domain.

Create a Private Key Certificate which will be used for TLS/SSL binding, using the hostname you have
chosen, in this example blazor-boilerplate.demodomain.com. Use a development certificate like Au-
thKey.pfx, create a self-signed certificate or a use a free service like letsencrypt.org. Make sure you
mark the private key as exportable when you create the certificate.

Select TLS/SSL Settings and upload the .pfx certificate, then under Bindings add a binding to your
chosen host name.

d. Finally, select Overview and download the publish profile that you will later import into Visual Studio.

Create and Configure Azure SQL Server and SQL Database

Create a new Azure SQL server called blazor-boilerplate-demo-sql in the blazor_boilerplate_demo_rg
resource group (very simple to do so instructions not shown here).

Select Show Firewall Settings and ensure that Allow Azure services and resources to access this server
is turned on.

2.2. Cons 17

Blazor Boilerplate, Release 4.0.0

Select + Create Database and configure the new database as follows:

Database Name: blazor-boilerplate-demo-db

Elastic Pool: No

Compute/Storage: Basic 5DTU/2GB (about US$5 per month)

Admin Login: <Your_Admin_Username>

Admin Password: <Your_Admin_Password>

Once created, open the new SQL database resource and select Show database connection strings. Copy
the ADO.NET (SQL Authentication) string and save it for use in the next step.

Configure Visual Studio Project for Azure Publishing

Open the Blazor Boilerplate solution in VS and select the BlazorBoilerplate.Server project. Right-
click/Publish and select + New to create a new profile. Select Import Profile and now browse and select
the Azure Web Deploy publish profile you downloaded from the Overview tab earlier.

Edit the new profile and configure as follows:

Configuration: Debug - Any CPU

Framework: .Net5.0

Deployment Mode: Self-Contained

Runtime: win-x64

File Publish: Remove additional files at destination

Databases/Default: Use this connection string at runtime

18 Chapter 2. Blazor WebAssembly

Blazor Boilerplate, Release 4.0.0

Now paste the SQL database connection string you saved earlier and make this modification. Change
‘Server’ to ‘Data Source’. The final string should look something like this:

Data Source=tcp:blazor-boilerplate-demo-sql.database.windows.net,1433; Initial Catalog=blazor-
boilerplate-demo-db;User Id=<adminusername>; Password=<adminuserpassword>;
Trusted_Connection=False; Encrypt=True; MultipleActiveResultSets=True;

Paste the same connection string into each of the Entity Framework Migrations.

Select the Connection tab and confirm that the Destination URL is http://blazor-
boilerplate.azurewebsites.net or change it to your custom one (http://blazor-boilerplate.demodomain.com)
if you are using a custom domain. This is the URL that the publish tool will open after publishing.

Create and Configure Azure Key Vault

Azure Web App could be running multiple instances in multiple deployment slots. By default, the app
stores encrypted information in local storage and separate instances can’t access it. We need to store it in
a central, protected place that can be accessed by all instances, and all instances must be able to unencrypt
the content.

We use Azure Blob Storage as the central store (persistence provider) and Azure Key Vault as the common
encryption provider.

Create a new Azure Key Vault in the blazor_boilerplate_demo_rg resource group and name it blazor-
boilerplate-demo-kv.

Open the new resource, select Certificates and choose + Generate/Import, then import your .pfx certifi-
cate.

Give the certificate the name BBAUTH and password Admin123.

2.2. Cons 19

Blazor Boilerplate, Release 4.0.0

Select the certificate in the list and check that Issuance Policy / Advanced Policy Configuration has
Exportable Private Key set to Yes.

Select and open the certificate and copy the X.509 SHA-1 Thumbprint (in hex) for use later in appset-
tings.json.

Return to the key vault main menu and select Access Policies. Add a new policy, then click Select
Principal and search for / select the Azure App Service you created earlier (e.g. blazor-boilerplate).

Give the policy Get access to Secret Permissions, because Identity Server needs access to the private key
so we will import the certificate as a secret. It should also have Get access to Certificate Permissions.

Copy the DNS Name of the key vault and save it so that you can add it to appsettings.json in a later step.

20 Chapter 2. Blazor WebAssembly

Blazor Boilerplate, Release 4.0.0

Create and Configure Blob Storage (for keys.xml)

In Startup.cs we persist keys to Azure Blob Storage and protect them with Azure Key Vault. We therefore
need access to a private blob container to store the keys.

Create an Azure Storage Account in the blazor_boilerplate_demo_rg resource group and name it blazor-
boilerplate_storage or similar.

Open the new resource and select + Container to create a new blob container called blazor-boilerplate-
keys. The access level should be private.

Return to the storage account and select Access Keys, then unhide the keys. Copy the key1 or key2
Connection String and save it so that you can add it to appsettings.json in the next step.

Configure Blazor Boilerplate & Deploy to Azure

Configure Azure settings in appsettings.json

In Visual Studio, open the BlazorBoilerplate solution if it isn’t already, then select the BlazorBoiler-
plate.Server project. Edit appsettings.json.

Set DefaultConnection to the string we stored earlier, e.g:

Data Source=tcp:blazor-boilerplate-demo-sql.database.windows.net,1433; Initial Catalog=blazor-
boilerplate-demo-db; User Id=<adminusername>; Password=<adminuserpassword>;
Trusted_Connection=False; Encrypt=True; MultipleActiveResultSets=True;

Edit both of the following sections and insert your own saved parameters where shown:

HostingOnAzure

“RunsOnAzure”: true,

“RunningAsAppService”: true,

“RunningAsDocker”: false, // not implemented yet.

“AzureKeyVault”: {

“UsingKeyVault”: true,

“UseManagedAppIdentity”: true,

“AppKey”: “”, // not implemented yet.

“AppSecret”: “”,

“KeyVaultURI”: “https://blazor-boilerplate-demo.vault.azure.net/”,

“CertificateIdentifier”: “https://blazor-boilerplate-demo.vault.azure.net/certificates/BBAUTH/<HEX_STRING_HERE>”,

“CertificateName”: “BBAUTH”,

“ContainerName”: “blazor-boilerplate-keys”,

“KeysBlobName”: “keys.xml”

}

BlazorBoilerplate

“ApplicationUrl”: “https://blazor-boilerplate.demodomain.com”,

“IS4ApplicationUrl”: “https://blazor-boilerplate.demodomain.com”,

2.2. Cons 21

Blazor Boilerplate, Release 4.0.0

“UseLocalCertStore”: false,

“CertificateThumbprint”: “<X.509_SHA-1_THUMBPRINT_HERE>”,

. . .

You may also want to change Serilog / MinimumLevel / Default from ‘Warning’ to ‘Debug’ while you
are getting the demo up and running.

Check / Modify Startup.cs

In Visual Studio, open the BlazorBoilerplate solution if it isn’t already, then select the BlazorBoiler-
plate.Server project. Edit Startup.cs.

The section that relates to Azure hosting begins around line 147. Find the two lines below:

dataProtectionBuilder.PersistKeysToAzureBlobStorage(blobClient);

dataProtectionBuilder.ProtectKeysWithAzureKeyVault(new Uri(certificateIdentifier), new Default-
AzureCredential(credentialOptions));

There is a current limitation of persisting keys to blob storage. The blob won’t get created on first
run, and the app will probably error on startup. To fix this, comment out the line dataProtection-
Builder.ProtectKeysWithAzureKeyVault, publish the app and let it run, and verify that keys.xml is
created in the keys blob container before you uncomment it.

Publish the BlazorBoilerplate Solution

Right-Click the BlazorBoilerplate.Server project and select Publish. Hit the Publish button and check
that the app publishes without errors and opens a browser with the URL you specified earlier in the publish
profile.

If the app was published successfully, you can now check that it managed to persist keys to blob storage.
Open your Storage Account and select Containers. Open the blazor-boilerplate-keys container and
confirm that keys.xml now exists. If so, proceed to the final step below.

The site should now redirect to https://blazor-boilerplate.demodomain.com or https://blazor-boilerplate.
azurewebsites.net if you aren’t using a custom domain, and open correctly at the Blazor Boilerplate home
page.

Azure Troubleshooting Tips

Kudu

The Kudu Diagnostic Console is available at https://blazor-boilerplate.scm.azurewebsites.net/DebugConsole.

22 Chapter 2. Blazor WebAssembly

https://blazor-boilerplate.demodomain.com
https://blazor-boilerplate.azurewebsites.net
https://blazor-boilerplate.azurewebsites.net

Blazor Boilerplate, Release 4.0.0

A few of the more useful troubleshooting logs are:

/LogFiles/stdout_???_??.log.

/site/wwwroot/Logs/log-????.log. If you set the SerilogMinimumLevel to Debug earlier you will see
the full series of startup log entries, including any errors related to startup.

You can also stream logs from the web app either within the Azure Portal (Web App Service / Monitoring
/ Log Stream) or to Visual Studio if you prefer.

Remote Debug in Visual Studio

To remotely debug, you must first publish a Debug Configuration of Blazor Boilerplate to Azure. Edit
the Publish Profile in Visual Studio and set Configuration to Debug - Any CPU.

As a simple remote debugging test, try the following:

Open the Shared / Modules folder and the BlazorBoilerplate.Theme.Material.Demo project. Open the
Pages folder and edit TodoList.razor. Set a breakpoint at the line await LoadMainEntities();

Open Cloud Explorer in Visual Studio and select your web app within your subscription (under App
Services), right-click and Attach Debugger to the Blazor Boilerplate app. The Visual Studio Output
Window will show the application starting up. Once symbols are loaded a browser should open and
display the home page. Select ToDo List and execution should halt at the await LoadMainEntities();
breakpoint in VS.

Azure Portal Web App Diagnostic Tools

App Service Diagnostics as accessed via Diagnose and Solve Problems within the Web App on the
Azure Portal.

Diagnostic Tools has a couple of useful tools, including Check Connection String, access to Application
Event Logs, and Advanced Application Restart

2.2.8 Dual mode Blazor

As stated in doc home Blazor has two hosting models: WebAssembly or Server. Each hosting model has pros and
cons, so you have to decide which is better for your web application.

With Blazor Boilerplate you can switch at runtime between WebAssembly or Server in the Settings of Admin.

2.2. Cons 23

Blazor Boilerplate, Release 4.0.0

Choose the desired runtime in the dropdown list and then click on Save button. The application is then reloaded.

2.2.9 MultiTenancy

The implementation of multitenancy is based on Finbuckle.MultiTenant.

The host strategy is used:

services.AddMultiTenant()
.WithHostStrategy("__tenant__")
.WithEFCoreStore<TenantStoreDbContext>()
.WithFallbackStrategy(Settings.DefaultTenantId);

Setup Visual Studio and Windows for multiple bindings

Open \src.vs\BlazorBoilerplateconfig\applicationhost.config and add these bindings:

<site name="BlazorBoilerplate.Server" id="...">
<application path="/" applicationPool="BlazorBoilerplate.Server AppPool">
<virtualDirectory path="/" physicalPath="...\src\Server\BlazorBoilerplate.Server"

→˓/>
</application>
<bindings>
<binding protocol="http" bindingInformation="*:53414:localhost" />
<binding protocol="http" bindingInformation="*:53414:tenant1.local" />
<binding protocol="http" bindingInformation="*:53414:tenant2.local" />

</bindings>
</site>

24 Chapter 2. Blazor WebAssembly

https://www.finbuckle.com/MultiTenant

Blazor Boilerplate, Release 4.0.0

Run as administrator \src\Utils\Scripts\addTenantBindings.cmd to enable access in Windows to the above bindings.
It contains commands like

netsh http add urlacl url=http://tenant1.local:53414/ user=everyone

Open as administrator C:\Windows\System32\drivers\etc\hosts and add the following line:

127.0.0.1 tenant1.local tenant2.local

Delete the previous database if any, because DatabaseInitializer inits TenantInfo for the two tenants.

Run debug and in Admin UI you will find a MultiTenancy section with links to the two demo tenants.

In the following screenshot you see the configuration with the two online demo tenants.

2.2.10 IdentityServer4

IdentityServer4 has detailed documentation to read first.

IdentityServer4 authentication is used with ApplicationController:

[Route("api/data/[action]")]
[Authorize(AuthenticationSchemes = AuthSchemes)]
[BreezeQueryFilter]
public class ApplicationController : Controller
{

private const string AuthSchemes =
"Identity.Application" + "," + IdentityServerAuthenticationDefaults.

→˓AuthenticationScheme; //Cookie + Token authentication

In fact as you can see ApplicationController uses both cookie and bearer token authentication scheme.

Currently ApiClient uses cookie authentication to access ApplicationController. To see an example of external access
with ApiClient and bearer authentication, you have to look at BlazorBoilerplate.IdentityServer.Test# projects.

2.2. Cons 25

https://identityserver4.readthedocs.io/en/latest/

Blazor Boilerplate, Release 4.0.0

2.2.11 Source Generators

To avoid repetitive tasks, I created some Generators based on Source Generators.

Notes

Visual Studio 16 has some issues with Source Generators, especially when you clone BlazorBoilerplate and build the
first time.

Even rebuilding BlazorBoilerplate.Shared sometimes a lot of errors are listed, but they are fake. Ignore them and run
BlazorBoilerplate.Server or close and reopen Visual Studio.

Source generated is not visually updated.

Sometimes entities generated and present in the figure do not respect the most updated version of the source.

26 Chapter 2. Blazor WebAssembly

https://github.com/enkodellc/blazorboilerplate/tree/master/src/Utils/BlazorBoilerplate.SourceGenerator/
https://devblogs.microsoft.com/dotnet/introducing-c-source-generators/

	Blazor Server
	Pros
	Cons

	Blazor WebAssembly
	Pros
	Cons
	Architecture
	Security
	Breeze Sharp with Blazor
	Entity Framework Core
	Localization
	Deploy with Terraform
	Hosting Blazor Boilerplate 2.0.0 on Azure
	Dual mode Blazor
	MultiTenancy
	IdentityServer4
	Source Generators

